US009111096B2

a2z United States Patent (10) Patent No.: US 9,111,096 B2
Pintiysky et al. 45) Date of Patent: Aug. 18, 2015
(54) SYSTEM AND METHOD FOR PRESERVING 6,374,207 B1* 4/2002 Lietal. ..o 703/27
AND SUBSEQUENTLY RESTORING 7,664,626 B1* 2/2010 Ferrie 703/23
7,849,297 B2* 12/2010 Kissell 712/228
EMULATOR STATE 8,555,386 Bl 10/2013 Belov
. 2006/0155525 Al* 7/2006 Aguilaretal. 703/26
(71) Applicant: Kaspersky Lab ZAO, Moscow (RU) 2008/0263658 Al 10/2008 Michael et al.
2008/0320594 Al 12/2008 Jiang
(72) Inventors: Vladislav V. Pintiysky, Moscow (RU); 2009/0119310 A1* 5/2009 Larueetal.ccooe... 707/100
Sergey Y. Belov, Moscow (RU) 2012/0117652 Al 52012 Manni
’ 2012/0174224 Al 7/2012 Thomas et al.
. 2012/0233578 Al 9/2012 Karlsson
(73) Assignee: AO Kaspersky Lab, Moscow (RU) 2013/0097120 Al* 4/2013 Mummidiocooevvrner.n... 707/649
. 2013/0110940 Al 5/2013 Pasquero et al.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by O days.
EP 237186 A2 5/2010
(21) Appl. No.: 14/221,488 RU 101235 UL 172011
WO 2011018271 Al 2/2011
(22) Filed: Mar. 21,2014 * cited by examiner
(65) Prior Publication Data Primary Examiner — Lisa Lewis
US 2015/0121531 Al Apr. 30, 2015 Assistant Examiner — Maung Lwin
(74) Attorney, Agent, or Firm — Arent Fox LLP; Michael
30) Foreign Application Priority Data Fainberg
Oct. 24,2013 (RU) oceircrcercrceneenene 2013147291 (57) ABSTRACT
(51) Int.Cl. Disclosed are systems, methods, and computer program
GO6F 21/00 (2013.01) products for preserving and subsequently restoring a state of
GO6F 21/56 (2013.01) a program emulator. In one aspect, the system loads a file into
HO4L 29/06 (2006.01) an emulator of the computer system and determines whether
GOG6F 11/14 (2006.01) an emulation is being performed for the first time. When the
(52) US.CL emulation is performed for the first time, the system loads into
CPC GOG6F 21/566 (2013.01); HO4L 63/145 the emulator an initial image of the emulator state and emu-
(2013.01); GOGF 11/1471 (2013.01) lates the file using the loaded initial image of the emulator
(58) Field of Classification Search state. During emulation, the system creates and stores new
None images of the emulator state upon occurrence of predefined
See application file for complete search history. conditions. When the emulation is not performed for the first
. time, the system identifies new images of the emulator state
(56) References Cited created during initial emulation of the file, loads into the

U.S. PATENT DOCUMENTS

6,067,410 A
6,338,147 B1 *

5/2000 Nachenberg
1/2002 Methetal.ccccoernne 714/13

emulator the identified images, and resume emulating the file
using the new images of the emulator state.

18 Claims, 6 Drawing Sheets

o
emulation

First

202

No

l gmulation?,

Create original
image of
emulator state

Load required
image of
emulator state

Determine
conditions for

creating new
images

Choose necessary
image for
continuing
emulation

>
200~ e emutstion 210
image

™\ 209

U.S. Patent

Aug. 18, 2015

Sheet 1 of 6

gmmad Windows 800;1\, 101

§

Manager

¥

-4

I
§ Load basic drivers (\.102

kil

Load OS kernel ¥N103
¥

Load session ~_104

manager

w

Load Winlogon ¥™\.105
¥

Load applications ~_106

and services

US 9,111,096 B2

U.S. Patent Aug. 18, 2015 Sheet 2 of 6 US 9,111,096 B2

Start of file o~ 201

emulation
\i_ 202
w“'w N
Yes " First o
) emulation? "
v\"“‘”“w‘
k ¥
Create original Load reqguired
image of 203 image of L 204
emulator state emulator state
205 '

W File emudation i

Determine :
conditions for |
, N\-206
creating new ¢
images

) o 207
7 Emutation
<: terminated o No 5
successfuﬂy}w-’“ " 1 Chos‘:}se ne«:;essary
| x‘ff image for ~_ 209
.4 comtinuing :
Yes enudation
208™{ End }
e W
21174 File emulation e Loaﬁi;zzissa'fy 210

U.S. Patent Aug. 18, 2015 Sheet 3 of 6 US 9,111,096 B2

Condition #1 /

\FF“N‘
o

&
\"e’

ef
image #2 ;
J"f“‘
e LR -

f‘ ' P4
Condition #3 /

e

U.S. Patent Aug. 18, 2015 Sheet 4 of 6 US 9,111,096 B2

JEREEL

-~ = ‘
& & g |
{ image #2 loaded § {” Image #3 toaded \ ¢ mage N foaded
. withlava § | With NET] S

. Framework ~ with module M
3 A 3 ‘.." p
ww*""/ : e < \\ e

o o
e et fa CERRIRRREL

‘\"\w.

Fig. 4

U.S. Patent Aug. 18, 2015 Sheet 5 of 6 US 9,111,096 B2

‘ - tmage loading
File 501 module 502 -~
5B
o
<* w--\w‘“w#“
. image
» Emulator 503 database
204

CrmanAnpAAA R AR

A
bl

image creation
module 505

US 9,111,096 B2

Sheet 6 of 6

Aug. 18, 2015

U.S. Patent

9 "Bid
Gg (sjaainsQ
ieioudusd
0% 2] e G e weiboid
08 (s)s01n8(
nding gieg ($)10d (s}oruc {(s}aaug
euss teondQ N8I pIeH oz sweiboid
&7 (3)oo1noq /sucneayddy
wduy B1eq
_
_ 07 shg . €2
0% WRNBAG V2 SO ‘
0L oMeN ” paBg oIpNY e
] |
{s)pies S T S
SHIOMION — 1z
=T cc SOIg
GO sioveads % WoH
ndo f T T T T T T T T T
pied solydels T2 Aowopn Waisks
08 Jouuon G asndwion

US 9,111,096 B2

1
SYSTEM AND METHOD FOR PRESERVING
AND SUBSEQUENTLY RESTORING
EMULATOR STATE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of priority under 35 U.S.C.
119(a)-(d) to a Russian Application No. 2013147291 filed on
Oct. 24, 2013, which is incorporated by reference herein.

TECHNICAL FIELD

The disclosure relates generally to the field of information
security, and more specifically, to systems, methods and com-
puter program products for preserving and subsequently
restoring a state of a program emulator of an antivirus appli-
cation.

BACKGROUND

The code of modern software, including malware, consti-
tutes a complex set of instructions for jumps, calls, loops and
other operations. It should be noted that the executable files
are becoming increasingly complex due to the increasing
popularity of high-level programming languages and also the
greater complexity of computer hardware and operating sys-
tems. This applies both to trusted programs and to malicious
ones. Malicious programs can perform a number of charac-
teristic actions, such as stealing passwords and other confi-
dential user data, adding a computer to a bot network to carry
out DDoS attacks or send out spam mail, blocking the correct
operations of the system for purposes of extortion, and other
malicious actions that are unwanted by the user and harmful
to the user’s computer system.

One of the ways of investigating potentially harmful pro-
grams is by antivirus applications that may use a program
emulator to analyzing the behavior of the programs. There are
various methods of emulation. One of them is a program
imitation of the processor, the memory, and other devices by
creating virtual copies of the registers of the processor,
memory, and instruction set of the processor. Thus, the pro-
gram instructions are executed not on the real processor, but
on its virtual copy, and the calls of the system API functions
are emulated and the emulated result of the working of the
function is sent in response.

It should be noted that the process of initializing an emu-
lator can be rather resource-intensive. The initialization of the
emulator should involve not only creating a virtual copy of the
necessary hardware (processor, working memory), but also
virtual copies of a number of key components of the operating
system (OS) in which the emulation of the execution of the
application will occur. Among the key components of the OS
one can mention, for example, the kernel of the operating
system, which is responsible for its necessary mechanisms of
operation, such as the processing of interrupts and excep-
tions, core drivers, memory manager, and so forth. For a
proper “mimicking” (emulating) of the working OS, one
needs to repeat the process of its loading, albeit in a rather
simplified form.

FIG. 1 shows the process of loading the Windows operating
system. In step 101, Windows Boot Manager may be loaded,
being responsible for finding the installed OS Windows and
enabling the selecting of the loading of any OS found. Next,
in step 102, the loading of the basic drivers may occur, which
are responsible, for example, for enabling a working with the
hard disk partition on which the selected OS is installed (i.e.,

20

35

40

45

55

60

2

the file system driver is loaded). Next, the necessary part of
OS kernel may be read from the disk and loaded into memory
in step 103, for example, Ntoskrnl.exe and hal.dll, and the
registry, memory manager, object manager, etc., are initial-
ized. In step 104, the sessions manager (smss.exe) is loaded,
which is responsible for loading the system variables, the
Win32 subsystem, and the further loading of winlogon.exe in
step 105. After the user successfully performs the authenti-
cation in step 106, the applications and services with autorun
registry key are loaded, and then the OS will be fully ready to
interact with the user, awaiting the starting of applications and
the input of data.

For the emulation process, it is not necessary to fully emu-
late the loading of the operating system. For example, steps
101 and 102 can be omitted, leaving only steps 103 and 104 in
simplified form. That is, it will be sufficient to emulate the
most important functionality for the correct functioning of the
OS, which is required for application emulation. For Win32
applications, it will be necessary to emulate the starting of
smss.exe with subsequent starting of csrss.exe, which initial-
izes the Windows subsystem and enables creating of pro-
cesses and threads. Since the emulation of a potentially harm-
ful application requires the creating of a more detailed
operating environment (such as the emulation of other pro-
cesses or services), itis also necessary to emulate the starting
of winlogon.exe with the subsequent “starting” of processes
like explorer.exe and services.exe, it being possible to emu-
late the starting of svchost processes from the latter. By the
term “starting” in this case is meant the recreating in the
emulator of the same processes that occur when the processes
are created within the real OS, albeit in greatly simplified
form. Such an approach lets one recreate the real OS to a
sufficient degree for starting practically any application
designed to work in the given OS. For potentially harmful
applications, such a level of detail in recreating the environ-
ment is also necessary, both in order to get around possible
anti-emulation tricks that might include the actual checking
for the presence of started services, system variables values,
and other elements which are present in the real OS, and in
order for the malicious functional to be implemented, which
may be aimed at certain applications. As an example, one can
mention the process explorer.exe, which is often the target of
attack, the web browser processes, for which a corresponding
exploit can be utilized, and so on.

Thus, the problem of creating a corresponding environ-
ment for emulation of a potentially harmful application
requires the most detailed possible recreating of the real OS
and the applications started in it. The process of initialization
of'such an environment can take up much time and resources
(starting of the emulation process, loading from hard disk into
memory all necessary data for the initialization of such virtual
structures as the file system, the registry, and so on), which
shortens the time for the actual emulation of the application
code.

At present, approaches exist for preserving the state of an
emulated environment. For example, the emulator QEMU
supports the creation of images, including those which pre-
clude the need to perform the process of loading of the OS.
However, the image is preserved on disk only at the request of
the user, and it does not support any structure for preserving
a series of recorded images. This approach concurs entirely
with the operating mode of a virtual machine manager.

However, the known approaches do not involve automatic
creation of images of an emulated system, or the state of
execution of an emulated application that would make it
possible to track down every possible branching of the execu-

US 9,111,096 B2

3

tion of the program code. From the standpoint of the analysis
of'malicious programs, such an approach would be able to get
around anti-emulation tricks.

The creators of malware use various tricks to defeat emu-
lation of the program code, which can be based on limitations
relating to the emulation process and the implementing of an
emulator in antivirus solutions. The emulator creates a virtual
copy of the processor, the computer components and the
operating system (OS) only to a limited extent with curtailed
capabilities, since the full recreation of all capabilities of such
a processor or system API functions is not possible for a
number of reasons: the immense labor for such a develop-
ment, the presence of undocumented functions, the large drop
in performance when such an emulator is working. Thus, the
creators of malware can resort to the following approaches for
detecting the fact of an execution in an emulated environ-
ment:

The calling of an undocumented or seldom used API func-

tion.

The execution of a number of instructions of the central
processor with subsequent checking, for example, of a
number of flags that are set. If the emulation of the
processor commands is insufficiently precise, a number
of flags might have values different from those which
would have been set when executed by real processor.

Checking of the correct execution of an API function. The
checking can be very complicated and involve an analy-
sis of the error codes returned during an incorrect call or
a checking of the processor registers values.

Looking for certain bytes in memory. For example, byte by
byte search for the header MZ in memory after the
loading of kernel132.dll when starting the process. In
the OS Vista 64, a 64 kb alignment is used for the
kernel32.dll, and the region between the header and the
first section will not be mapped in the address space of
the process. Ifan access to this is attempted an exception
will occur. If the exception was not registered, the stan-
dard OS exceptions handler will be called up, and this
will terminate the process.

SUMMARY

Disclosed are systems, methods and computer program
products preserving and subsequently restoring the state of a
program emulator.

According to one aspect, a method for emulating a file on
a computer system may include loading a file into an emulator
of'the computer system; determining whether an emulation is
being performed for the first time or not; when the emulation
is performed for the first time, loading into the emulator an
initial image ofthe emulator state; emulating the file using the
loaded initial image of the emulator state; during emulation of
the file, creating and storing one or more new images of the
emulator state upon occurrence of one or more predefined
conditions; when the emulation is not performed for the first
time, identifying one or more new images of the emulator
state created during initial emulation of the file; loading into
the emulator the one or more identified images of the emula-
tor state; and resuming emulating the file using the one or
more new images of the emulator state.

According to another aspect, a system for emulating a file
on a computer system may include a hardware processor
configured to: load a file into an emulator of the computer
system; determine whether an emulation is being performed
for the first time or not; when the emulation is performed for
the first time, load into the emulator an initial image of the
emulator state; emulate the file using the loaded initial image

40

45

60

4

of the emulator state; during emulation of the file, create and
store one or more new images of the emulator state upon
occurrence of one or more predefined conditions; when the
emulation is not performed for the first time, identify one or
more new images of the emulator state created during initial
emulation of the file; load into the emulator the one or more
identified images of the emulator state; and resume emulating
the file using the one or more new images of the emulator
state.

According to yet another aspect, a computer program prod-
uct stored on a non-transitory computer-readable storage
medium, may include computer-executable instructions for
emulating a file on a computer system, the instructions being
for: loading a file into an emulator of the computer system;
determining whether an emulation is being performed for the
first time or not; when the emulation is performed for the first
time, loading into the emulator an initial image of the emu-
lator state; emulating the file using the loaded initial image of
the emulator state; during emulation of the file, creating and
storing one or more new images of the emulator state upon
occurrence of one or more predefined conditions; when the
emulation is not performed for the first time, identifying one
or more new images of the emulator state created during
initial emulation of the file; loading into the emulator the one
or more identified images of the emulator state; and resuming
emulating the file using the one or more new images of the
emulator state.

One technical result of the disclosed system, method and
computer program for preserving emulator state is a shorten-
ing of the time for emulation of a file by loading the necessary
images of the emulator state. Another technical result is a
circumvention of anti-emulation tricks during the emulation
of'afile due to the loading the necessary images of the state of
the emulator to continue the emulation in the case of an
incorrect termination of the emulation of a file. Yet another
technical result is the discovering of unhandled exceptions
which lead to the termination of the emulation by loading the
necessary images of the state of the emulator to continue the
emulation in the case of incorrect termination of a file emu-
lation due to an unhandled exception.

The above simplified summary of example aspects serves
to provide a basic understanding of the invention. This sum-
mary is not an extensive overview of all contemplated
aspects, and is intended to neither identify key or critical
elements of all aspects nor delineate the scope of any or all
aspects of the invention. Its sole purpose is to present one or
more aspects in a simplified form as a prelude to the more
detailed description of the invention that follows. To the
accomplishment of the foregoing, the one or more aspects of
the invention include the features described and particularly
pointed out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into
and constitute a part of this specification, illustrate one or
more example aspects of the invention and, together with the
detailed description, serve to explain their principles and
implementations.

FIG. 1 shows the process of loading the Windows operating
system.

FIG. 2 is a flow diagram illustrating an example method for
emulating a file according to one aspect of the invention.

FIG. 3 is a tree diagram of the storing of images of the
emulator state according to one aspect of the invention.

US 9,111,096 B2

5

FIG. 4 illustrates possible images of state of the emulator in
dependence on the processes loaded according to one aspect
of the invention.

FIG. 5 is a diagram of a system for emulating a file accord-
ing to one aspect of the invention.

FIG. 6 is a diagram illustrating an example aspect of a
general-purpose computer system on which are implemented
the systems and methods for emulating a file in accordance
with aspects of the invention.

DETAILED DESCRIPTION

Example aspects are described herein in the context of a
system, method and computer program product for emulating
a file on a computer system. Those of ordinary skill in the art
will realize that the following description is illustrative only
and is not intended to be in any way limiting. Other aspects
will readily suggest themselves to those skilled in the art
having the benefit of this disclosure. Reference will now be
made in detail to implementations of the example aspects as
illustrated in the accompanying drawings. The same refer-
ence indicators will be used to the extent possible throughout
the drawings and the following description to refer to the
same or like items.

FIG. 2 is a flow diagram illustrating an example method for
emulating a file on a computer system according to one aspect
of'the invention. In step 201 the start of the file emulation may
occur. There may be several variants of when it is necessary to
emulate a file:

The file is unknown and it needs to be emulated to deter-

mine its possible maliciousness;

Emulation is necessary to determine all possible error
codes when running the emulation, for example, of an
application installer;

Emulation is necessary to investigate the functionality of
the application, when it is necessary to determine how
the system calls are used, the list of required third-party
libraries, and so on.

In step 202 it may be determined whether the emulation is
being run the first time or not. If the emulation is occurring for
the first time, then in step 203 an original image of the emu-
lator state may be created, which includes the minimum
required OS functional as described in the context of FIG. 1
above. Besides the initialization of the OS functional, a mod-
ule for detecting malicious code, the state of the virtual file
system, the virtual registry, and the tree of virtual objects may
be loaded into the emulator. Different images of the state of
the emulator may also include the processes loaded in
memory (such as processes of important services), open han-
dlers of resources (such as files), and processes with threads
executing code (such as an executable file being emulated).
Consequently, the image constitutes a copy of all the enumer-
ated objects in memory that is preferable to store in the
operating memory to speed up the procedures for storage and
restoration.

If the emulation is not being done for the first time (for
example, the emulation of another file was done previously),
then in step 204 the required image of the emulator state may
be determined, which is loaded into the emulator for subse-
quent emulation of the file in step 205. The determining of the
required image of the emulator state will be described below.

When running the emulation in step 206, a determination
may be made of the fulfilling of the necessary conditions for
creating new images of the emulator state. As an example of
such conditions, the following occurrences can be mentioned:

Branches in the code (conditional jumps).

5

10

25

30

35

40

45

50

6

Determining by means of signature the use of a potential
anti-emulation trick (such as the calling of seldom used
API functions with subsequent checking of the result of
their execution).

Emulation of a certain number of instructions.

Periodic creation of images at predetermined intervals of
time.

Next, in step 207, it may be determined whether the emu-
lation was terminated successtfully or not. A successful result
in step 208 may entail either the discovery of harmful behav-
ior during the emulation of the file being executed, or a
termination after the time elapses (or after a certain number of
instructions are executed). An incorrect termination of the
emulation process may entail too quick of a termination of the
emulated process (possible triggering of one of the anti-emu-
lation tricks), absence of the required libraries, or an
unhandled exception leading to termination of the process
(this may be connected with errors in the program code).
Upon incorrect termination of the emulation process, in step
209 the necessary image may be chosen for continuing the
emulation (this is described more fully in the context of FIG.
3). In step 210 the necessary image may be loaded into the
emulator and the emulation may resume in step 211, which
proceeds back to step 206. Thus, such an approach may
enable a correct terminating of the emulation even for those
executable files whose emulation would have terminated
incorrectly when using standard methods of emulation.

FIG. 3 shows a tree diagram of the storing of images of the
emulator state according to one aspect of the invention. Such
a tree structure may be able to store images of the emulator
state in dependence on one of the conditions:

Loading into memory of an image of the executable file
needing to be emulated. Returning to such an image lets
the emulation of the executable file resume, as it were,
“from scratch.”

Loading into memory of the required process, such as
Internet Explorer. The use of this image will enable an
emulation of possible malicious files that requires the
presence of a started Internet Explorer process (in whose
address space a malicious code may have been written
and executed later) for its execution.

The occurrence of certain actions during the emulation of
the code of the executable file. During the emulation,
there may occur conditional jumps, which may be part of
the checks for anti-emulation tricks (for example, when
certain checks are performed unsuccessfully, the emu-
lated program simply terminates its execution).

For example, images of the emulator state may be pre-
served in the following manner. Image #1 may be the original
Windows image that includes the state of the system imme-
diately after loading. Condition #1 may be the loading into the
emulator of the file being executed, which needs to be emu-
lated for presence of malicious code. Thus, image #2 differs
from image #1 in that the process being emulated has already
been loaded into memory. Consequently, the condition for
creating an image also determines the difference between the
images (taking into account information on the number of
emulated instructions, the functions called up, the change in
resource descriptors, and so on). Afterwards, the fulfillment
of'new conditions will lead to the creation of new images. For
example, a branching in the code is condition #3 and may lead
to the creation of image #4, which corresponds to the state of
the emulator before the execution of the conditional jump in
the code. Condition #4 may be a triggering of an antivirus
signature, indicating the possible use of anti-emulation tricks,
which will lead to the creation of image #5. Afterwards, if the
emulation of the executable file is terminated incorrectly in

US 9,111,096 B2

7

step 207, moving along the tree structure of preserved emu-
lator images will make it possible to load the image of the
emulator state prior to the incorrect termination of the emu-
lation process. In moving along such a tree to find an image,
one first goes to the image describing the state of the emulator
prior to the incorrect termination of the emulation process. If
the emulation process again terminates incorrectly, it is pos-
sible to load the change in the image of the emulator state one
level higher up (i.e., an even earlier version of the emulator
state), until one gets to the state when the file being emulated
was loaded into the emulator. If the conditions for creation of
the images included, say, a conditional jump, then when load-
ing the image at the corresponding condition the jump will be
done to the other code branch. An example of'a change in state
of the emulator might be:

Jumping to the other code branch at a conditional jump;

Change in the status of resource handlers (such as files). In
this case, open files or connections can be forced to
remain unclosed.

Reversing previously made changes. One example might
be to clear the data transfer buffer or change the branch
of a registry.

Changing the return value of an executed function. For
example, if the execution of a function as a result of the
emulation returns a value FALSE, the value can be
forced to become TRUE.

It should be noted that saving images of the emulator state
is most preferable in the operating memory to accelerate the
processes of saving and restoring of loaded images. The size
of'an image may vary from several tens of megabytes (loaded
OS) to several hundreds of megabytes or even gigabytes,
depending on the loaded processes. For operating memory
economy, some of the images can be kept on disk, or only the
difference (diff) between images can be used, which may be
minimal if the conditions for creation of the images occur
rather often during the emulation.

FIG. 4 illustrates possible images of the emulator state
depending on the processes loaded according to one aspect of
the invention. For example, one may use the loaded OS as
image #1, and the following images contain different loaded
processes, such as Java, .NET, Explorer, Outlook and other
such processes. The images may also contain certain sets of
started processes that may be needed for a successful emula-
tion of certain files having a series of dependencies. For
example, the emulation of an unknown file requires the virtual
Java machine process, in which the malicious code (exploit)
will be loaded, and afterwards making use of a vulnerability
(possibly unknown), while Windows network services might
be needed for the subsequent execution of the malicious
functional.

FIG. 5 is a diagram of a system for emulating a file accord-
ing to one aspect of the invention. When it is necessary to
emulate an unknown file 501, the emulator 503 may be used,
which may load the necessary image by means of the image
loading module 502 into the emulator. The module 502 may
determine the required image in the database of images 504
based on the criteria described in the context of FIG. 3. At the
same time, the emulator 503 may send a request to create an

5

10

20

25

30

35

40

45

50

55

8

The use of the system shown in FIG. 5 lets one solve a
number of problems:

Speed up the loading of the emulator state when emulating
executable files, since the loading of the image in a
preferred aspect is an operation of copying in operating
memory;

Determine possible error codes in the subsequent execu-
tion of the application (such as when starting an
installer);

Circumvent possible anti-emulation tricks in order to iden-
tify a malicious function.

FIG. 6 is a diagram illustrating an example aspect of a
general-purpose computer system 5 on which are imple-
mented the systems and methods for emulating a file in accor-
dance with aspects of the invention. The computer system 5
may include, but not limited to, a personal computer, a note-
book, tablet computer, a smart phone, a network server, a
router, or other type of processing device. As shown, com-
puter system 5 may include one or more hardware processors
15, memory 20, one or more hard disk drive(s) 30, optical
drive(s) 35, serial port(s) 40, graphics card 45, audio card 50
and network card(s) 55 connected by system bus 10. System
bus 10 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus and a
local bus using any of a variety of known bus architectures.
Processor 15 may include one or more Intel® Core 2 Quad
2.33 GHz processors or other type of microprocessor.

System memory 20 may include a read-only memory
(ROM) 21 and random access memory (RAM) 23. Memory
20 may be implemented as in DRAM (dynamic RAM),
EPROM, EEPROM, Flash or other type of memory architec-
ture. ROM 21 stores a basic input/output system 22 (BIOS),
including the basic routines that help to transfer information
between the modules of computer system 5, such as during
start-up. RAM 23 stores operating system 24 (OS), such as
Windows® 7 Professional or other type of operating system,
that is responsible for management and coordination of pro-
cesses and allocation and sharing of hardware resources in
computer system 5. Memory 20 also stores applications and
programs 25. Memory 20 also stores various runtime data 26
used by programs 25.

Computer system 5 may further include hard disk drive(s)
30, such as SATA HDD, and optical disk drive(s) 35 for
reading from or writing to a removable optical disk, such as a
CD-ROM, DVD-ROM or other optical media. Drives 30 and
35 and their associated computer-readable media provide
non-volatile storage of computer readable instructions, data
structures, applications and program modules/subroutines
that implement algorithms and methods disclosed herein.
Although the exemplary computer system 5 employs mag-
netic and optical disks, it should be appreciated by those
skilled in the art that other types of computer readable media
that can store data accessible by a computer system 5, such as
magnetic cassettes, flash memory cards, digital video disks,
RAMs, ROMs, EPROMs and other types of memory may
also be used in alternative aspects of the computer system 5.

Computer system 5 further includes a plurality of serial
ports 40, such as Universal Serial Bus (USB), for connecting
data input device(s) 75, such as keyboard, mouse, touch pad

image to the image creation module 505 on the basis of one of 60 and other. Serial ports 40 may be also be used to connect data

the conditions necessitating the creation of images (as dis-
cussed above). In one aspect, the module 505 may keep a tree
structure of images of the emulator state, where the transi-
tions from certain nodes of the tree to other nodes are based on
the indicated conditions. The database 504 itself may be kept
in the computer’s operating memory, which is the most pref-
erable aspect.

output device(s) 80, such as printer, scanner and other, as well
as other peripheral device(s) 85, such as external data storage
devices and the like. System 5 may also include graphics card
45, such as nVidia® GeForce® GT 240M or other video card,
for interfacing with a display 60 or other video reproduction
device, such as touch-screen display. System 5 may also
include an audio card 50 for reproducing sound via internal or

US 9,111,096 B2

9
external speakers 65. In addition, system 5 may include net-
work card(s) 55, such as Ethernet, WiFi, GSM, Bluetooth or
other wired, wireless, or cellular network interface for con-
necting computer system 5 to network 70, such as the Inter-
net.

In various aspects, the systems and methods described
herein may be implemented in hardware, software, firmware,
or any combination thereof. If implemented in software, the
methods may be stored as one or more instructions or code on
a non-transitory computer-readable medium. Computer-
readable medium includes data storage. By way of example,
and not limitation, such computer-readable medium can com-
prise RAM, ROM, EEPROM, CD-ROM, Flash memory or
other types of electric, magnetic, or optical storage medium,
or any other medium that can be used to carry or store desired
program code in the form of instructions or data structures
and that can be accessed by a processor of a general purpose
computer.

In various aspects, the systems and methods described in
the present disclosure in terms of modules. The term “mod-
ule” as used herein refers to a real-world device, component,
or arrangement of components implemented using hardware,
such as by an application specific integrated circuit (ASIC) or
field-programmable gate array (FPGA), for example, or as a
combination of hardware and software, such as by a micro-
processor system and a set of instructions to implement the
module’s functionality, which (while being executed) trans-
form the microprocessor system into a special-purpose
device. A module can also be implemented as a combination
of the two, with certain functions facilitated by hardware
alone, and other functions facilitated by a combination of
hardware and software. In certain implementations, at least a
portion, and in some cases, all, of a module can be executed
on the processor of a general purpose computer (such as the
one described in greater detail in FIG. 6 above). Accordingly,
each module can be realized in a variety of suitable configu-
rations, and should not be limited to any particular implemen-
tation exemplified herein.

In the interest of clarity, not all of the routine features of the
aspects are disclosed herein. It will be appreciated that in the
development of any actual implementation of the invention,
numerous implementation-specific decisions must be made
in order to achieve the developer’s specific goals, and that
these specific goals will vary for different implementations
and different developers. It will be appreciated that such a
development effort might be complex and time-consuming,
but would nevertheless be a routine undertaking of engineer-
ing for those of ordinary skill in the art having the benefit of
this disclosure.

Furthermore, it is to be understood that the phraseology or
terminology used herein is for the purpose of description and
not of restriction, such that the terminology or phraseology of
the present specification is to be interpreted by the skilled in
the art in light of the teachings and guidance presented herein,
in combination with the knowledge of the skilled in the rel-
evant art(s). Moreover, it is not intended for any term in the
specification or claims to be ascribed an uncommon or special
meaning unless explicitly set forth as such.

The various aspects disclosed herein encompass present
and future known equivalents to the known modules referred
to herein by way of illustration. Moreover, while aspects and
applications have been shown and described, it would be
apparent to those skilled in the art having the benefit of this
disclosure that many more modifications than mentioned
above are possible without departing from the inventive con-
cepts disclosed herein.

20

25

40

45

50

55

10

The invention claimed is:

1. A method for emulating a file on a computer system, the
method comprising:

loading the file into an emulator of the computer system;

determining whether an emulation is being performed for

the first time or not;

when the emulation is performed for the first time,

emulating the file using an initial image of the emulator
state;

during emulation of the file, creating and storing one or
more new images of the emulator state upon occur-
rence of one or more predefined conditions that
resulted when running the emulation, and loading a
state of virtual file system, a virtual registry, and a tree
data structure of virtual objects into the emulator
while detecting malicious codes in the computer sys-
tem;

when the emulation is not performed for the first time,

identifying one or more new images of the emulator state
created during an initial emulation of the file; and

loading into the emulator the one or more identified
images of the emulator state-to be used for emulating
the file.

2. The method of claim 1, further comprising:

when the emulation is not performed for the first time,

determining whether initial emulation of the file was
terminated correctly or incorrectly;

when the emulation was terminated incorrectly, resum-
ing emulating the file using the one or more new
images of the emulator state; and

when the emulation was terminated correctly, not
resuming emulating the file.

3. The method of claim 2, wherein the emulation was
terminated correctly upon at least one of: detection of a harm-
ful behavior of the emulated file, emulation of the file for a
predetermined period of time, and emulation of a predefined-
number of instructions.

4. The method of claim 2, wherein the emulation was
terminated incorrectly upon at least one of: an occurrence of
an anti-emulation trick, absence of a required library, and an
occurrence of an unhandled exception leading to termination
of the process.

5. The method of claim 1, wherein the predefined condi-
tions include one or more of an occurrence of branches in a
code ofthe emulated file, detection of an anti-emulation trick,
emulation of a predefined number of instructions, and a pre-
determined time interval.

6. The method of claim 1, wherein storing one or more new
images of the emulator state includes storing the one or more
new images of the emulator state in the tree data structure.

7. A system for emulating a file on a computer system, the
system comprising:

a hardware processor configured to:

load the file into an emulator of the computer system;
determine whether an emulation is being performed for
the first time or not;
when the emulation is performed for the first time,
emulate the file using an initial image of the emulator
state;
during emulation of the file, create and store one or
more new images of the emulator state upon occur-
rence of one or more predefined conditions that
resulted when running the emulation, and loading a
state of virtual file system, a virtual registry, and a
tree data structure of virtual objects into the emu-
lator while detecting malicious codes in the com-
puter system;,

US 9,111,096 B2

11

when the emulation is not performed for the first time,

Identify one or more new images of the emulator state

created during an initial emulation of the file; and

load into the emulator the one or more identified images of

the emulator state-to be used for emulating the file.

8. The system of claim 7, further comprising:

when the emulation is not performed for the first time,

determining whether initial emulation of the file was
terminated correctly or incorrectly;

when the emulation was terminated incorrectly, resum-
ing emulating the file using the one or more new
images of the emulator state; and

when the emulation was terminated correctly, not
resuming emulating the file.

9. The system of claim 8, wherein the emulation was ter-
minated correctly upon at least one of: detection of a harmful
behavior of the emulated file, emulation of the file for a
predetermined period of time, and emulation of a predefined
number of instructions.

10. The system of claim 8, wherein the emulation was
terminated incorrectly upon at least one of: an occurrence of
an anti-emulation trick, absence of a required library, and an
occurrence of an unhandled exception loading to termination
of the process.

11. The system of claim 7, wherein the predefined condi-
tions include one or more of an occurrence of branches in a
code ofthe emulated file, detection of an anti-emulation trick,
emulation of a predefined number of instructions, and a pre-
determined time interval.

12. The system of claim 7, wherein storing one or more new
images of the emulator state includes storing the one or more
new images of the emulator state in the tree data structure.

13. A non-transitory computer program product stored on a
non-transitory computer-readable storage medium, the com-
puter program product comprising computer-executable
instructions for emulating a file on a computer system, includ-
ing instructions for:

loading the file into an emulator of the computer system;

determining whether an emulation is being performed for

the first time or not;
when the emulation is performed for the first time,
emulating the file using an initial image of the emu-
lator state;
during emulation of the file, creating and storing one
or more new images of the emulator state upon

12

occurrence of one or more predefined conditions
that resulted when running the emulation, and load-
ing a state of virtual file system, a virtual registry,
and a tree data structure of virtual objects into the
5 emulator while detecting malicious codes in the

computer system,

when the emulation is not performed for the first time,
identifying one or more new images of the emulator
state created during initial emulation of the file; and
loading into the emulator the one or more identified
images of the emulator state to be used for emulat-
ing the file.

14. The non-transitory computer program product of claim
13, further comprising instructions for:

when the emulation is not performed for the first time,

determining whether initial emulation of the file was
terminated correctly or incorrectly;

when the emulation was terminated incorrectly, resum-
ing emulating the file using the one or more new
images of the emulator state; and

when the emulation was terminated correctly, not
resuming emulating the file.

15. The non-transitory computer program product of claim
14, wherein the emulation was terminated correctly upon at
least one of: detection of a harmful behavior of the emulated
file, emulation of the file for a predetermined period of time,
and emulation of a predefined number of instructions.

16. The non-transitory computer program product of claim
14, wherein the emulation was terminated incorrectly upon at
least one of: an occurrence of an anti-emulation trick, absence
of a required library, and an occurrence of an unhandled
exception leading to termination of the process.

17. The non-transitory computer program product of claim
13, wherein the predefined conditions include one or more of
an occurrence of branches in a code of the emulated file,
detection of an anti-emulation trick, emulation of a pre-
defined number of instructions, and a predetermined time
interval.

18. The non-transitory computer program product of claim
13, wherein storing one or more new images of the emulator
state includes storing the one or more new images of the
emulator state in the tree data structure.

15

25

30

35

#* #* #* #* #*

